
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July 2013 694
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Relevant Page Retrieval and Query
Recommendation using Semantic Analysis of

Queries
Usha Yadav, Neelam Duhan, Bhawna Kaushik

Abstract—Due to the massive size of the Web and low precision of user queries, search results returned from present web search

engines can reach to even hundreds of thousands of documents. Therefore, finding the right information can be a tedious task if not

impossible. This paper represents an approach that tries to solve this problem by finding the semantic similarity and similarity metrics to

group similar terms using clustering techniques. These similar terms are bind to each other using links in proposed index repository in

order to facilitate presentation of results in more compact form and enable the semantic browsing of the results set.

Index Terms: Index Repository, Search Result Clustering, Fuzzy similarity, Semantic similarity

——————————  ——————————

1 INTRODUCTION

In traditional Search engine, when a user submits a query
on its interface, it gets processed and a large list of
documents is shown to the user. The users have to go
through all these documents to find out the required ones.
This is very tedious and time consuming process. One
approach to manage large results set is by clustering. The
concept arises from document clustering in Information
Retrieval (IR) domain: find groupings for a set of
documents so that documents belonging to the same cluster
are similar and documents belonging to different cluster are
dissimilar. Search results clustering thus can be defined as a
process of automated grouping search results. However, in
contrast to traditional document clustering, clustering of
search results is done as per user query request. Clustering
of search results can help user navigate through large set of
documents more efficiently. By providing concise and
accurate description of clusters, it lets user localizes
interesting document faster. The growth of WWW is likely
to explode and thus for efficient access and exploration of
useful information, appropriate interfaces to search and
navigation through this enormous collection are of critical
need.
Web search engines allow user to formulate a query, to
which it responds using its index to return set of references
to relevant web documents. User can search for information
by navigating through categories to identify the needed
reference. Although the performance of search engines is
improving every day, searching on the Web can be a
tedious and time-consuming task due to the following facts:

 Search engines can only index part of the
"indexable" Web, due to the huge size and highly
dynamic nature of the Web.

 The user's "intention behind the search" is not
clearly expressed which resulted in too general,
short queries.

 As the effects of the above two, results returned by
search engine can count from hundreds to
hundred thousands of documents

 Over half of users did not access results beyond the
first page and more than three in four users did not
go beyond viewing two pages

The most important challenge with information retrieval
revolves around two basic problems:

1 Getting a good query from search experiences with
the aim of helping them craft better questions.

2 Presenting “easy-to-judge” results to minimize
what the user has to read through.

For these reasons in this paper, improved data structure for
indexing is proposed so as to optimize the Search Engine‟s
result, keeping in mind its storage and access efficiency.
Also a new search result interface is proposed in which the
internet users are presented with the few coherent groups
of queries similar to user‟s own query. Unlike scanning a
long list of documents satisfying a user‟s query, it is often
easier to scan a few coherent groups than many Individual
documents. The paper has been organized as follows:
Section 2 describes the basis terminologies forming the
basis of the proposed work and literature work done under
them. Section 3 explains the proposed optimization system.
Section 4 explains the Term similarity Analysis module.
Section 5 explains the Terms Clustering module. Section 6
explains the Proposed Index Repository along with
example illustration. Section 7 describes Query

————————————————

 Usha Yadav is currently pursuing Ph.D in computer engineering in
YMCA University of Science & Technology, India,. E-mail:
usha.yadav.912@gmail.com

 Neelam Duhan is currently working as an Associate Professor in YMCA
University of Science & Technology. E-mail:
neelam_duhan@rediffmail.com

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July 2013 695
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Recommendation module and section 8 concludes the
paper with some discussion on future research.

2 PRILIMINARIES AND RELATED WORK

2.1 Web Crawler

Search engine relies on a crawler module to provide the
grist for its operation. [1] describes that Crawlers are small
programs that `browse' the Web on the search engine's
behalf, similarly to how a human user would follow links
to reach different pages. The programs are given a starting
set of URLs, whose pages they retrieve from the Web. The
crawlers extract URLs appearing in the retrieved pages, and
give this information to the crawler control module. This
module determines what links to visit next, and feeds the
links to visit back to the crawlers. (Some of the functionality
of the crawler control module may be implemented by the
crawlers themselves.) The crawlers also pass the retrieved
pages into a page repository. Crawlers continue visiting the
Web, until local resources, such as storage, are exhausted.
In most cases, the crawler cannot download all pages on the
Web. With so much research in this area, comprehensive
search engine currently indexes a small fraction of the
entire Web [2],[3]. Considering this fact, it is important for
the crawler to carefully crawl the pages and to visit
important pages by prioritizing the URLs in the queue
properly, so that the fraction of the Web that is visited (and
kept up-to-date) is more meaningful. In this paper we have
utilize the terms present in Page Repository to find the
similarity between these terms in order to further
recommend user with more useful query.

2.2. Indexing

In [4],[5] described that the existing search engine rely on
the concept of Inverted Index for purposes of information
storage. Basically an inverted index contains two parts
dictionary and postings. Dictionary contains terms
(vocabulary or lexicon) and for each term, there is a list that
records the documents in which term occurs. Each item in
the list which records that a term appeared in a document
is conventionally called a posting. The list is then called a
postings list (or inverted list), and all the postings lists
taken together are referred to as the postings. In another
paper [6], the author presented an improved schema for
Index Repository for the purpose of better interpretability
and efficiency of crawling and indexing process in web
search engine and also to provide User Feedback
Mechanism. In modified Index Repository, the schema was
described as: Dictionary, Document Posting, Position
Postings
where
Dictionary: <term, doc_freq>
Document Postings: <Doc_ID, depth, inlinks, outlinks,
rank, click_count, term_freq>
Position Postings: <pos1, pos2, … posn>

Dictionary consists of the terms and the document
frequency i.e. the number of documents containing the
term, while Postings provide the related document
information. The last field in the document postings is the
term frequency which gives the number of occurrences of
the term in the document. The position postings give the
positions in a document at which term appears. We had
further customized the schema of Index Repository so as to
map the similar terms in a cluster together by using new
filed “pre-link” and “next-link”.

2.3 Similarity Metrics for Terms Clustering

Perfect clustering requires a precise definition of the
proximity between a pair of objects, in terms of either the
pair wised similarity or distance. A variety of similarity or
distance measures have been proposed and widely applied,
such as edit distance, cosine similarity and the Jaccard
correlation coefficient. Meanwhile, similarity is often
conceived in terms of dissimilarity or distance as well [7].
Given the diversity of similarity and distance measures
available, their effectiveness in text document clustering is
still not clear. Although Strehl et al. compared the
effectiveness of a number of measures [8].

Semantic similarity measures play important roles in
information retrieval and Natural Language Processing.
Lexical relations are very difficult concepts to define
formally; a detailed account is given by [9]. Rather than
struggle with a operational definition of synonymy and
similarity, It will be good to rely on lexicographers for
„correct‟ similarity judgments by accepting words that co-
occur in thesaurus entries (synsets) as synonymous.. The
English thesaurus has been a popular arbiter of similarity
for 150 years [10], and is strongly associated with the work
of Peter Mark Roget [11]. Researches done on lexical
resources are, the most influential computational lexical
resource is WORDNET [12]. WORDNET, developed by
Miller, Fellbaum and others at Princeton University, is an
electronic resource, combining features of dictionaries and
thesauri, inspired by current psycholinguistic theories of
human lexical memory

In this paper, we focused on two measures of similarity
with some example illustration: Fuzzy Similarity metrics
with edit distance and semantic similarity using
WORDNET. Edit distance measures the minimum number
of edit operations (insertion, deletion, and substitution) to
transform one string to another. And the lexical resource
WORDNET used to compute the semantic similarity
between words like synonym, hypernym, meronymy.

2.4 Search Results Clustering

One approach to manage large results set is by clustering.
The concept arises from document clustering in
Information Retrieval domain: find groupings for a set of
documents so that documents belonging to the same cluster

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July 2013 696
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

are similar and documents belonging to different cluster are
dissimilar. Search results clustering thus can be defined as a
process of automatically grouping search results into to
thematic groups. However, in contrast to traditional
document clustering, clustering of search results are done
as per user query request and locally on a limited set of
results return from the search engine. Clustering of search
results can help user navigate through large set of
documents more efficiently. By providing concise, accurate
description of clusters, it lets user localizes interesting
document faster.
The earliest work on search results clustering were done by
[13], the author proposed a new approach to this problem
by constructing a graph of concepts (which represents text)
rather than collection of words. [14] worked on
Scather/Gather system, followed with application to web
documents and search results by [15],[16] to create Grouper
based on novel algorithm Suffix Tree Clustering. Inspired
by their work, a Carrot framework was created by [17] to
facilitate research on clustering search results. This has
encouraged others to contribute new clustering algorithms
under the Carrot framework like LINGO [18], AHC [19].
Other clustering algorithms were proposed by Zhang [20],
Semantic Hierarchical Online Clustering using Latent
Semantic Indexing to cluster Chinese search results or Class
Hierarchy Construction Algorithm by [21]. An in-depth
survey of Search Result Clustering algorithms is available
in [22].

2.5 Limitation of Existing Work

A critical look at the available literature indicates the
following issues, which need to be addressed while
building efficient recommendation system for search
engines:

1. Lack of user‟s knowledge in formatting queries on
Search engine.

2. Improve precision of user query by suggesting or
recommending queries.

3. Providing the user with the search result interface
which is compact and concise.

4. Instead of clustering the documents based on the
common phrases only, is the main concern.
Semantic relationships among the documents
should also be considered.

5. Data Structure used for indexing need to be
examined so as to optimize the storage and access
efficiency.

6. Processing time and memory used in Clustering
and indexing need to be examined properly.

In the next chapter, proposed work is discussed. Various
components and the data structures used in the work of the
proposed system are described in detail. Example
illustration and a sample interface for representation of
results are also presented.

3 PROPOSED OPTIMIZATION SYSTEM
The proposed system tries to improve the efficiency of the
existing search engines. In search result clustering, search
results mean the documents that were returned in response
to a query. The default presentation of search results in
information retrieval is a simple list. Users scan the list
from top to bottom until they have found the information
they are looking for. In the proposed system, the approach
of compacting the search results is developed, so that
similar documents appear together. By this way, it is often
easier to scan a few coherent groups than many individual
documents.

In the proposed system, a new data structure of index
repository is proposed to optimize and enhance the
efficiency of the Search results. The large collection of terms
present in the Page Repository of the Crawler is generally
collected after parsing the downloaded web pages. This
collection of terms can prove very useful to optimize the
User Search Result. So, Similarity between all these terms is
calculated so as to form number of clusters, containing
terms similar to each other based upon their semantic. This
cluster information is used by the indexer to enhance its
Data Structure so as to provide user with more
recommended queries based upon the query submitted by
the user on Search engine Interface.
The proposed system works in four steps which briefly are
given below to have an overview of how the system works:

Step 1: The motive of the system is to recommend
the user with more semantically related query. For
this, the similarity between the huge collections of
terms in the page repository is found. This
similarity is calculated based upon the fuzzy based
similarity function which uses Levenshtein edit
distance and thesaurus based similarity function
which finds the relationship between terms using
the lexical database.
Step 2: Term cluster database containing the
clusters of similar terms is formed using the Term
Clustering Module which depends upon the two
similarity functions discussed in Step 1.
Step 3: These cluster information are embedded in
proposed index repository so as to link all the
similar terms together in the dictionary.
Step 4: When the user puts its query, then it
receives the documents fulfilling its query along
with the recommended set of query (coherent
groups) which are semantically related to the user
query.

3.1 Proposed System Architecture

The architecture for the proposed system is shown in Fig
3.1, which consists of the following functional components:

1. Term Similarity Analyzer
2. Term Clustering Module

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July 2013 697
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

3. Query Recommender
Along with the functional components, two databases are
also been used. These are given below:

1. Term Cluster Database
2. Proposed Index Repository

Fig. 3.1 High Level Architecture of the Proposed
Optimization System

4 TERM SIMILARITY ANALYZER
The component Term Similarity Analyzer computes the
Semantic similarity of the terms, which are collected in the
database known as Page Repository of the Crawler. After
the crawler downloads the web pages, parsing is done and
all the terms in the web pages is collected in the Page
Repository. This repository contains the complete
knowledge about all the fetched pages In the proposed
architecture, Page repository is mined by applying various
similarity functions on terms(token) to measure the
semantic similarity between the them. Similarity of each
term is calculated with all the other terms in the Page
Repository. This component uses two similarity functions,
one is Fuzzy based Matching which uses Leveinshtein Edit
Distance and other is Thesaurus Based Similarity which
uses any lexical Database or resources such as WordNet.

With each iteration, two terms from the repository are
taken by the Fuzzy based similarity function and Thesaurus
based similarity function to calculate the similarity value
till the similarity of each terms with all the other terms are
not calculated. The similarity value is calculated in the
range [0,1]. The average value of both the similarity
functions has been calculated. It means equal weightage is
given to both the similarity functions used. But as per the
requirement, it can be changed. Any of the similarity

functions can be given more weightage than the other.
Instead of calculating average value, α and β values can be
assigned to both the functions. The combined similarity
function is given in (4.1).
Simcombined(T1,T2)=αSimfuzzy(T1,T2)+βSimthesaurus(T1
,T2) (4.1)

where α, β can be any value between 0 and 1.

Now, α and β can be given by the experts depending upon
the importance given to any of the Similarity function i.e
Fuzzy Similarity function or Thesaurus Based Similarity
function.

Fig. 4.2 Graphical Representation of Term Similarity
module
4.1 Fuzzy Based Similarity
Fuzzy Based Similarity function calculates the similarity
values in the range between 0 and 1. It uses Levenshtein
Edit Distance, which is widely applied in tasks including
spell checking and plagiarism detection. The distance
between two text strings is defined to be the sum of the
costs of the number of edit operations required for
transforming one term into the other. Having insertion,
deletion, and substitution as operations, each at the cost of
1, yields the Levenshtein distance.

There is an assumption in Levenshtein distance is that,
more is the distance between the two terms, less similar is
the terms.
So, to calculate the similarity value, the Levenshtein has
been divided by the maximum number of characters
contained in any of the two terms and then subtracted from
1 to get fuzzy similarity value between them. More is the
fuzzy similarity value; more similar are the two terms. The
algorithm to calculate the Fuzzy similarity value is given
below in Fig. 4.3. The two terms from the page repository
has been given as an input and the fuzzy similarity value is

Page Repository

Fuzzy Based

Similarity

Thesaurus Based

Similarity

Simavg(T1,T2) = Simfuzzy(T1,T2) + Simthesaurus(T1,T2)

Simthesaurus(T1,T2) =

ThesaurusRelation (T1,

T2)

Return value b/w [0,1]

 Simfuzzy(T1,T2) =

LevenshteinDistance

(T1, T2)

Return value b/w

[0,1]

 2

From Crawling Phase

Terms Terms

To Clustering

Module

 IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July 2013 698
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

calculated and returned as output. The output value lies
between only 0 and 1 i.e. [0,1].

4.1.1 Example Illustration
Similarity Values between some sample terms are
calculated and shown in Table 4.1.

Fig. 4.3 Algorithm for Fuzzy Based Similarity Function

Table 4.1 Calculation of Fuzzy Similarity Values

TERM (T1) TERM (T2) Fuzzy Similarity
Simfuzzy(T1,T2)

human humanbeing 0.5

people person 0.33

animal mammal 0.5

plant flower 0.16

name authorname 0.4

elbow eye 0.2

bark tree 0

elpoep nosrep 0.33

The values in the given above table are calculated by taking
two terms from the Page Repository and then applying the
algorithm as shown in Fig. 4.3. This has been done by
applying two most important steps:

1. By making a matrix, whose dimensions depends
upon the number of characters in both the terms
and then the algorithm is followed to find out the
Levenshtein Distance between the two terms.

2. After having Levenshtein Distance, Fuzzy Based
Similarity between the two terms has been
calculated by applying the formula shown in the
algorithm.

After applying all these steps, Fuzzy based similarity of
some sample terms are presented in the Table 4.1.

4.2 Thesaurus Based Similarity
In Text Similarity Analyzer, Thesaurus Based Similarity
module finds out the semantic relationship between terms
such as synonymy, hypernymy and Meronymy relations.
All the terms in the page repository of the crawler are
analyzed to find out the thesaurus relation between them.
Semantic similarity or semantic relatedness is a concept
whereby a set of documents or terms within term lists are
assigned a metric based on the likeness of
their meaning / semantic content. For a machine to be able
to decide the semantic similarity, intelligence is needed. It
should be able to understand the semantics or meaning of
the words. But a computer being a syntactic machine,
semantics associated with the words or terms is to be
represented as syntax. There are various methods proposed
to find the semantic similarity between words. Some of
these methods have used the precompiled databases like
WordNet, and Brown Corpus. In essence, semantic
similarity, semantic distance, and semantic relatedness all
mean, "How much does term A have to do with term B?"
The answer to this question is usually a number between -1
and 1, or between 0 and 1, where 1 signifies extremely high
similarity/relatedness, and 0 signifies little-to-none. For
example, “car” and “driver” are related, but not much
similar, but “car” and “vehicle” are similar in some degree.
Relatedness is thus more general than similarity.
Furthermore, semantic distance is the inverse of semantic
similarity that is the less distance of the two concepts, the
more they are similar.

In this thesis, Semantic Similarity between the terms like
synonym, hypernym, meronymy has been calculated by
using any of the lexical databases such as Word Net.

4.2.1 Example Illustration
The Thesaurus based Similarity between the terms in the
Page Repository is shown in Table 4.2 with the help of
WordNet and the similarity value returned is 0 or 1.

Algorithm: Fuzzy Similarity Calculator ()

I/P : Two terms T1 and T2 from page repository

O/P : Similarity value of two given terms in the range [0, 1]

int fuzzy_similarity (char T1[1..m], char T2[1..n])

 {

 // for all i and j, d[i,j] will hold the Levenshtein distance

between

 // the first i characters of T1 and the first j characters ofT2t;

 // note that d has (m+1)*(n+1) values

declare int d[0..m, 0..n]

for i from 0 to m

 d[i, 0] := i // the distance of any first term to an empty second

term

for j from 0 to n

 d[0, j] := j // the distance of any second term to an empty first

term

 for j from 1 to n

 {

 for i from 1 to m

 {

 if T1[i] = T2[j] then

 d[i, j] := d[i-1, j-1] // no operation required

 else

 d[i, j] := minimum

 (

 d[i-1, j] + 1, // a deletion

 d[i, j-1] + 1, // an insertion

 d[i-1, j-1] + 1 // a substitution

)

 } //end inner for

 } // end outer for

 Leh.distance = d[m,n]

Return (1-
𝐿𝑒𝑕.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

MAX (m.n)
) // MAX (m,n) calculates which terms

has maximum number of characters in it

}

IJSER

http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Meaning_(linguistic)
http://en.wikipedia.org/wiki/Semantic

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July 2013 699
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Table 4.2 Examples of Thesaurus Based Similarity

Terms (T1) Terms
(T2)

Relationship Simthesa
urus

sick Ill Synonymy(T1,T2) 1

name Authorn
ame

Synonymy(T1,T2) 1

animal Mamma
l

Hypernymy(T1,T2) 1

computer Glacier No relationship 0

plant Flower Hypernymy(T1,T2) 1

elbow Arm Meronymy(T1,T2) 1

bark Tree Meronymy(T1,T2) 1

While using, Thesaurus Based Similarity, the matcher
returns either 0 or 1 as the similarity value. The matcher
returns 0 if there exists no relationship between terms T1
and T2 . If any relationship (synonymy, hypernymy or
meronymy) exists between two terms, the matcher returns
1. For example, for attributes “author name” and “name”
two different terms (see row 2 of Table 4.2) respectively, the
matcher returns 1 as the similarity value.

4.3 Average Similarity Measure

The Average Similarity Value has been computed by taking
the average of the similarity values obtained from the Term
Similarity Analyzer which uses two strategies: Fuzzy Based
Similarity which compute the Levenshtein edit distance
between the two terms and gives the results in the index
range of [0,1] and other is Thesaurus Based Similarity finds
out the semantic relationship between terms. Both the
measures are equally important, so the average of both the
two Similarity measures is taken which is shown in (4.1):

Simavg T1, T2 =
Sim fuzzy T1,T2 + Sim thesaurus T1,T2

2
 (4.1)

Where T1,T2 are any two terms from the Page Repository,
T1 not equal to T2.
As an example illustration, Fuzzy similarity between two
terms i.e. name and authorname is 0.4 and Thesaurus Based
Similarity between these two terms are 1. So, the average
similarity between name and authorname is

Simavg (name, authorname) = (0.4 + 1)/2 = 0.70
Now using the Average Similarity value, the clusters of
similar terms can be formed. In this paper both the
strategies is given equal importance, but it can be altered by
the expert analysts depending on the importance being
given to two similarity measures.

The next component Term Clustering Module is explained
in the next section.

5 TERM CLUSTERING MODULE
The Term Clustering Module forms a number of different
clusters of terms by using the Similarity functions as
explained in the previous section. The similar terms are
placed together in the same clusters. When user submits
some query on the search interface, then all the similar
terms along with their documents, which are related to the
user query are recommended on the interface in the form of
coherent groups to increase the efficiency of User Search
results. For obtaining these clusters, various methods and
techniques can be used. The standard web search engines
have low precision, since typically a large number of
irrelevant web pages is returned together with a small
number of relevant pages. This phenomenon is mainly due
to the fact that keywords specified by the user may occur in
different contexts.
Consider for example the term "cluster". Consequently, a
web search engine typically returns long lists of results, but
the user, in his limited amount of time, processes only the
first few results. Thus, a lot of truly relevant information
hidden in the long result lists will never be discovered. Text
clustering methods can be applied to structure the large
result set such that they can be interactively browsed by the
user.

5.1 Algorithm of Term clustering module

The Term Clustering Module uses the algorithm shown in
Fig. 5.1, where each run of the algorithm computes k
clusters. The algorithm is based on the simple perspective:
initially, all the terms from the page repository are
considered to be unassigned to any cluster. Each term is
examined against all other terms in the page repository,
collected after parsing the document downloaded by the
crawler. If the similarity value turns out to be above the

pre-specified threshold value (), then the terms are
grouped into the same cluster. The same process is
repeated until all terms get classified to any one of the
clusters. The algorithm returns overlapped clusters i.e. a
single term may span multiple clusters. Each returned
cluster containing terms is stored in the Term Cluster
Database. The clustering algorithm takes O(n2) worst case
time to find all the term clusters, where n is the total
number of terms.

5.2 Term Cluster Database

In the Proposed Architecture, a term cluster Database is
used which store all the clusters containing semantically
related terms. The terms from the Page Repository is given
to the TSA (Term Similarity Analyzer) to calculate the
similarity between the terms using various functions. Then
the TCM (Term Similarity Module) is used to cluster the
similar terms based on the threshold given by the experts.
And then finally all these clusters are stored in the TCD
(Term Cluster Database.), where a cluster contains all the
terms similar to each other and the dissimilar terms are
contained in other clusters.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July 2013 700
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Fig. 5.1 Algorithm for Term Clustering Module

 Fig. 5.2 Construction of Term Cluster Database

6 PROPOSED INDEX REPOSITORY
The index is build up by a component called indexer and
contains information about all the keywords/terms present
in all the downloaded pages by the web crawler. An
inverted index constitutes a dictionary of terms (sometimes
also referred to as a vocabulary or lexicon). Then, for each
term, there is a list that records the documents in which
term occurs.
This Index Repository is changed by proposing a new index
fields i.e. Pre_link and nxt_link. Pre_link of a term
provides link to the previously related term and the
nxt_link provides pointer to the next term in the document
similar to that term. When a user submit a query term, then
all the pre_link and the nxt_link pointed by that term is
traversed and list of all the semantically similar terms along

with the top ranked documents satisfying that term are
presented on to the search interface This will optimize both
the user search and the indexing.

6.1 Schema of Proposed Index Repository

In tedious task of information gathering, key role is played
by the Data Structure. The schema, used for indexing
process has been changed so as to improve its efficiency
and ease in construction. Following is the data structures of
the Proposed Index Repository as shown in Fig.6.1

Fig 6.1 Schema of Proposed Index Repository
.
The detail description of all the fields in the proposed index
repository is shown in Table 6.1.Each row contains the
different terms in the schema and the column contains the
detailed description of the term.

In the Proposed index repository, Dictionary consists of the
pre_link which provide pointer to previous related term in
the dictionary and nxt_link which provide pointer next
related term in the dictionary, terms and the document
frequency i.e. the number of documents containing the
term, while Postings provide the related document
information. The last field in the document postings is the
term frequency which gives the number of occurrences of
the term in the document. The position postings give the
positions in a document at which term appears. So, the
schema can also be described as:
Dictionary_ Document Postings_ Position Postings

where
Dictionary: <pre_link ,term, doc_freq, nxt_link>
Document Postings: <Doc_ID, depth, inlinks,
outlinks, rank, click_count, term_freq>
Position Postings: <pos1, pos2, … posn>

6.2 Construction of Proposed Index Repository
In this work, few changes have been done to the data
structure of the traditional Index Repository. So, how these
changes have been made is explained in the following few
steps as given below:
In the next section, an external sorting algorithm is
suggested as a solution, for the problem of insufficient
memory size and the slow speed of indexing process.

1. Traditionally, indexer built index repository by
using the information in the Page Repository and
using various different approaches. But in this
proposed index repository, information from the
Term Cluster Database has also been used by the
indexer.

2. Indexer uses the cluster information and knows
about the terms which are in same cluster and are
semantically related to each other.

𝑆𝑖𝑚𝑎𝑣𝑔 𝑇1, 𝑇2 =
𝑆𝑖𝑚𝑓𝑢𝑧𝑧𝑦 𝑇1, 𝑇2 + 𝑆𝑖𝑚𝑡𝑕𝑒𝑠𝑎𝑢𝑟𝑢𝑠 𝑇1, 𝑇2

2

Algorithm: Term_Clustering(P, )

Given: A set of n terms in Page Repository (P) and similarity threshold 

Output: A set C= {C1, C2,…Ck} of k term clusters

// Start of Algorithm

k = 1; //k is the number of clusters.

For (each term T1 in P)

Set Cluster_Id(T1)= Null; // initially no term is clustered

For (each T1  P)

{

Cluster_Id(T1)= Ck;

Ck={T1};

 For (each T2 in P such that T1=! T2)

 {

 //Calculate fuzzy based similarity

 Simfuzzy = fuzzy_similarity(T1,T2);

 // Calculate the Thesaurus based Similarity

 SimThesaurus = ThesaurusRelation(T1,T2)

 // Calculate the Average Similarity

 If (Simavg(T1,T2)>) then

 set ClusterId(T2)= Ck;

 Ck= Ck U {T2};

 else

 continue;
 } // end for

 k= k+1;

} //end outer for
Return Term cluster set C.

Similarity Functions

Applied

Term Clustering

Module used

Term cluster

Database

 Terms from page repository

Term Doc

_Id

Pre_

link

Nxt_

link

Depth In-

links

Out_

links

Rank Freq Position

_Info

Click_

count

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July 2013 701
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

3. So, while creating the index repository, indexer
links all the similar terms to each other. For this
indexer uses the concept of doubly link-list.

Table 6.1 : Description of Proposed Index Repository

4. With each term, two links are attached called
pre_link and nxt_link. Pre_link will point to the
term which is related to that term but is stored
previously in the dictionary and nxt_link will point
to the term which is related to that term but is
stored ahead in the dictionary.

5. For each cluster, assign the pre_link of first term in
cluster as NULL and assign the nxt_link of last
term in cluster as NULL.

6. So that now dictionary contains 4 fields, pre_link,
term, document frequency, nxt_link. And
document listing contain Doc_ID, depth, inlinks,
outlinks, rank, click_count, term_freq and position
posting contains pos1, pos2, … posN.

6.3 Example Illustration
The organization of information in an index repository can
be understood by the means of some sample terms and
related page information as shown in Table 6.2 , which after
actually being placed in the index get converted into a
dictionary and a list of postings and this can be seen from
Fig. 6.2.
In this example, few terms are indexed along with their
other details. Values in all the fields are taken to show the
construction of the sample Proposed Index Repository.
Suppose the terms are Append, Born, Human, People,
Person. Now suppose the similarity between all these terms
are calculated with each other through two similarity
function which are FBS and TBS as discussed in Term
Similarity Analyzer.

Table 6.2 Sample Index Information

After calculating the similarity, suppose Human, People
and person all terms belong to same cluster and are
semantically related to each other. Then while creating the
proposed index repository, every term in the same clusters
are linked to each other using pre_link and nxt_link as
shown for the term “people” in the left part of Fig. 5.9,
called dictionary. So, now it can be seen that how the term
“people” is stored in the Proposed Index Repository.
Therefore, the schema can also be described as:
Where
Dictionary: < 223, 512, People, 3 >
 Document Postings: < 9, 3, 12, 22, 15, 17, 4 >

Position Postings: < 4, 16, 24, 43 >
Now suppose, user submit a query “people”, then all the
pre_link and nxt_link of term person are traversed, to
accumulate the terms semantically similar to “People”.
These terms are recommended to user as explained in
section 3.7.In the similar way, the whole sample index
information is organized which is called as Repository and
shown in the Fig. 5.9.

Fig. 6.2 Organization of Information in a Proposed Index
Repository

7. QUERY RECOMMENDER
In the Proposed Optimization system, Query
recommendation is the most important work with the help
of which Search results are optimized. Query

D3 3

2 5 4 9 5

D7 5

5 4 25 6 21

D21 9 4 23 7 1 40

- Abroad 3

- ------------- -

- Born 2

- -------------

-

- -------------

-

- Human 2

- -------------

-

- -------------

-

 People 3

- -------------

-

 Person 4

- -------------

-

4 6 26 99

7 35

3 23 45 74 D2 2

3 3 8 7 9

-- --

-- -- -- -- --

D3 2

2 10 21 8 12

-- --

-- -- -- -- --

D9 3

4 12 22 15 17

-- --

-- -- -- -- --

-- --

-- -- -- -- --

D6 4

5 8 32 2 13

-- --

-- -- -- -- --

-- --

-- -- -- -- --

-- --

-- -- -- -- --

9 31 56

-

-

-

-

-



-

-

-

-

-

-

Pre_link

nxt_link

Dictionary Document Postings Position Postings

N F P Terms

Pre_link P Doc_Freq F Nxt_link N

Field Description

Term A normalized token in the page.

Doc_Id The Document Id in which specified terms is present.

Pre_link It points to the previous semantic similar term in the

dictionary.

Nxt_link It points to the next semantic similar term in the dictionary.

Depth The depth of the document with Doc_Id in the web.

In-links The number of back links of the document derived from the

Link Store repository.

Out_links The number of forward links of the document again derived
from the Link Store repository

Rank It is a score provided to a document generally based upon its

link information e.g. Google’s PageRank. The rank may also
be provided on other parameters such as the popularity,

content, depth, click count of a document etc.

Freq It is the number of occurrences of the specified term in the
document

Position_Info At what positions, the term appears in the document.

Click_count This field stores an integer number indicating the number of

times, users clicked on the document. This information is
fed to the indexer from the search engine logs.

Related Link

It provides link to the related term in the cluster depending
upon the single term query.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July 2013 702
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

recommendation module deals with recommending
semantically similar queries to the user depending upon
the query given by him. Traditional web search engines
represent the most popular way to access information in the
Web. The procedure of search engines is based on a simple
pattern: for a query asked by a user, search engine responds
with a list of search results. It is very difficult task for a user
to scan the long list of retrieved search results and to find
out the document actually needed by him. The user wants
to find some concepts and then these concepts are written
in words, many internet users are not well accustom to the
way, query put on the search engine interface. So
sometimes it happens that, even after going through a list
of documents he is not being able to get the desired result.

So, Clustering of search results can help user navigate
through large set of documents more efficiently. It lets user
localizes interesting document faster. In this work, the
component query recommender provide the user with the
semantically related query along with their documents as a
search result but in a coherent group, so that the user can
pick any of the query first and then zoom it out to check for
web documents satisfying that query.

 7.1 Example Illustration
For query recommendation, an interface is designed for the
user as shown in Fig. 5.11, named as Pencarian Search
Result Interface. Continuing the example as taken in
section5.6.4, when the user enters its query, for example
“people” on this interface as shown on top in Fig. 7.1, and
then he is given the list of documents satisfying his query.
Also, he is recommended with more numbers of queries
like Person, Human etc. which are semantically related to
the query submitted by the user as shown in extreme left
side of the Fig. 7.1. The organization of information for the
query “people” in Proposed Index Repository is shown in
Fig 6.2.

Fig.7.1 Pencarian Search Result Interface for query “people”

Suppose, the user chooses recommended query, “Society”.
Then, by clicking on the query society, it will zoom out to
show the documents returned in response to his query as
shown in Fig. 7.2.

Fig.7.2 Pencarian Search Result Interface for semantically

related query “society”

8 CONCLUSION AND FUTURE SCOPE
Since the last decade, there is rapid development of
information technology and the rise of the internet and the
Web has revolutionized the way people use and access
information. Within few years, WWW has entered into the
state of information overload from the age of information
deficiency. This has given birth to a new, exiting domain of
research referred to as Web Mining or Web Information
Retrieval. While search engines have achieved quite good
results in delivering answer for well formulated, precise
queries, they have been less efficient as a tool for providing
the efficient access and navigation on the web search
results, which are presented to the user. So, recommending
the user with semantically similar search results in a very
compact and concise way by using term similarity and
clustering algorithm may be the solution for the problem.
In this dissertation, an optimization system is proposed
which also allow user to navigate and explore the number
of queries which are semantically similar to the query input
by him on search interface. Unlike the traditional search
engine, in which user has to go through the large collection
of web document presented as a search results for the
query given by user.

This section lists the limitations of the Proposed
Optimization System and the work which can be conducted
in the future to improve the current system design.

 The limitation of the lexical resources such as
WordNet is low coverage, which makes evaluation
more difficult. Semantic similarity between words
changes over time as new words are constantly
being created and new meaning is also being
assigned to the existing words. So, there is a scope
of using NLP (Natural Language Processing) to
make it much better and appropriate.

 The Proposed Optimization System is evaluated
for a single term query, as the number of terms in
the query increase, the complexity of the system
will becomes very high. So in future, a lot of work
can be done to reduce this complexity.

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July 2013 703
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

 There is very large size of the databases (in
particular, of the WWW). Therefore, the clustering
algorithms must be very efficient and scalable to
large databases. So, any different clustering
technique can be used in future.

 The Similarity between the terms can also be fined
using various other different approaches, so as to
minimize the space and the time complexity of the
Term Similarity Analyzer.

 The Data Structure of Index Repository can also be
modified in such a way so as to better represent
and link the similar terms.

 REFERENCES

[1] Garcia-Molina, Hector. Searching the Web, August 2001
[2] Steve Lawrence and C. Lee Giles. Accessibility of information on the

web. Nature, 400:107{109, 1999.
[3] Krishna Bharat and Andrei Broder. Mirror, mirror on the web: A

study of host pairs with replicated content. In Proceedings of the
Eighth International World-Wide Web Conference, 1999.

[4] Liu, X. (2010) „Efficient maintenance scheme of inverted index for
large-scale full-text retrieval‟, Second IEEE international conference
on Future Computer and Communication (ICFCC). 21-24 May,
2010. Wuhan, China.

[5] Zobel, J. and Moffat, A. (2006) „Inverted files for text search engines‟.
ACM Computing Surveys, Vol. 38, Issue 2, Article 6.

[6] Neelam Duhan,A.K.Sharma(2011)‟ A framework for utilising usage
trends in the crawling and indexing process of search engines‟.
Published in International Journal of Knowledge and Web
Intelligence, Volume 2 Issue 4.

[7] G. Salton. Automatic Text Processing. Addison-Wesley, New York,
1989.

[8] A. Strehl, J. Ghosh, and R. Mooney. Impact of similarity measures
on web-page clustering. In AAAI-2000: Workshop on Artificial
Intelligence for Web Search, July 2000.

[9] D.A. Cruse. Lexical Semantics. Cambridge University Press,
Cambridge, UK, 1986.

[10] George Davidson, editor. Thesaurus of English words and phrases:
150th Anniversary Edition. Penguin Books, London, UK, 2002.

[11] Donald L. Emblen. Peter Mark Roget: The Word and the Man.
Longman Group, London, UK, 1970.

[12] Christiane Fellbaum, editor. WordNet: An Electronic Lexical
Database. MIT Press, Cambridge, MA USA, 1998

[13] Ugo Scaiella, Paolo Ferragina,Andrea Marino, Massimiliano
Ciaramita.Topical Clustering of Search Results. WSDM‟12,Seattle,
Washington, USA (2012)

[14] Hearst, M. A., and Pedersen, J. O. Reexamining the cluster
hypothesis: Scat-ter/gather on retrieval results. In Proceedings of
SIGIR-96, 19th ACM InternationalConference on Research and
Development in Information Retrieval (ZÄurich, CH, 1996),pp. 76-
84.

[15] Zamir, O., and Etzioni, O. Web document clustering: A feasibility
demonstration.In Research and Development in Information
Retrieval (1998), pp. 46{54.

[16] Zamir, O., and Etzioni, O. Grouper: a dynamic clustering interface to
web searchresults. Computer Networks (Amsterdam, Netherlands:
1999) 31, 11-16 (1999), 1361-1374.

[17] Weiss, D. A clustering interface for web search results in polish and
english. Master's thesis, Poznan University of Technology, Poland,
June 2001.

[18] Osinski, S. An algorithm for clustering of web search result. Master's
thesis, Poznan University of Technology, Poland, June 2003.

[19] Wroblewski, M. A hierarchical www pages clustering algorithm
based on the vector space model. Master's thesis, Poznan University
of Technology, Poland, July 2003.

[20] Zhang, D. Towards Web Information Clustering. PhD thesis,
Southeast University, Nanjing, China, January 2002.

[21] Adam Schenker, Mark Last, A. K. Design and implementation of a
web mining system for organizing search engine results. In Data
Integration over the Web (DIWeb),First International Workshop,
Interlaken, Switzerland, 4 June 2001. (2001), pp. 62-75.

[22] C. Carpineto, S. Osi´nski, G. Romano, and D. Weiss. A survey of
web clustering engines. ACM Comput. Surv.,41(3):1–38, 2009.

IJSER

